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Abstract

The main focus in these notes is on the relation between special val-
ues of zeta-functions of global fields and orders of cohomology groups
and algebraic K-theory groups attached to rings of integers, a relation
extending Dirichlet’s analytic class number formula. The function field
case serves as a motivation for the study of étale cohomology and its
relation to Iwasawa theory. We describe the basic properties of étale co-
homology groups, and study in particular Galois descent and co-descent
for Galois extensions, the modifications — positive étale cohomology —
needed to treat the case of the prime 2, and suitable “globalizations”.
We provide a brief introduction to Iwasawa theory, concentrating on
the relation between the Main Conjecture and the orders of certain
étale cohomology groups. The connection to algebraic K-groups is ob-
tained via étale Chern characters, and we discuss the recent progress
on the Quillen-Lichtenbaum Conjecture, which is implied by a conjec-
ture of Bloch-Kato on the Galois symbols in Milnor K-theory. This
also leads to a reformulation of the Lichtenbaum Conjectures in terms
of motivic cohomology rather than K-theory. Finally, we describe the
impact of these results on the study of the K-groups of Z and their
relation to Vandiver’s Conjecture.
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0 Introduction

Around 1736 Euler computed the following infinite series

1 2
Yow = %

n>1

IR
=

nZIn 90

ZL _ o 691
n12 6825 - 93555

n>1

In fact, he calculated the sums for all even exponents in terms of Bernoulli
numbers:

Theorem 0.1. [Euler]. For m > 1:

1 BQm 2m—1,_2
R — (_1)m—|—1—2 m—1_2m
7; n2m (2m)!

The Bernoulli numbers B,, were defined by Jacob Bernoulli around 1713
as the coefficients of the power series of %5 around 0:

o0
et —1 "pl”
n=0

They are rational numbers, which can easily be calculated from the recursion

formula
B, B, 1

n! = k' (n—k+1)!

This yields for example

1
B():l, B1:—§, BQZ—, Bzm+1 =0 fOI‘le.
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In modern terminology, Euler computed the values of the Riemann zeta-

function .

¢(s) = Z s

n>1
at even positive integers s = 2m. The Riemann zeta-function, which is a
priori only defined for Re(s) > 1 has a meromorphic continuation throughout
the complex plane with a single simple pole at s = 1 (the harmonic series)
and residue
lim(s — 1)¢(s) = 1.

s—1

Furthermore, it satisfies a functional equation relating the values at s and
1—s:

% I‘(%) C(s) =T T (lgs) (1 - s).

Here I'(s) denotes the I'-function, which is a non-zero meromorphic function
with simple poles at s = —m for m = 0,1,--- and residues (—1)™/m!.
Let us consider the functional equation at s = 2m. Using the facts that
I'(m) = (m — 1)! and

we obtain

Corollary 0.2. For all m > 1:

_ _Bom
¢(1—2m) = o
As examples we note that
1 1 691
¢(=1) = ¢(=3) = ¢(=11) =

12’ 120° 23.32.5.7-13"

Since the I'-function has a simple pole at s = 0 with residue 1, the
functional equation shows that

() = .
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Not too much is known about the values of the zeta-function at odd
positive integers 1 + 2m. In 1979 Apéry [1] showed that ((3) is irrational.
A striking generalization is due to Rivoal, who proved that ((1 + 2m) is
irrational for infinitely many m (cf. [78]) and at least once in the range 2 <
m < 10 ([79]). To interpret the values we use again the functional equation.
The I'-function has a simple pole at —m, which has to be compensated by
a simple zero of the zeta-function at s = —2m. We denote by (*(—2m) the
first non-vanishing coefficient in a Taylor-expansion around s = —2m and
call this the special value of the zeta-function at s = —2m. We obtain

22m—|—1

¢(1+42m) = (-1)™ W

' ,R.Qm ) C*(_2m)7

in particular
((3) = —4n* - (*(2).

What we have seen so far is that in order to study values of the zeta-
function at positive integers it suffices to study special values of the zeta-
function at non-positive integers.

In order to understand the special values even at s = 0 we have to
generalize from Q to an algebraic number field F' with r; real embeddings
and 7y pairs of conjugate complex embeddings. Let or denote the ring of
integers in F', and for any non-zero ideal I C op let N(I) = |or/I| denote the
number of elements in the finite quotient ring op/I. Dedekind generalized
the Riemann zeta-function and defined the zeta-function of F' as

1
CF(S) = Z Wa

0#£ICop

which is again convergent for Re(s) > 1, can be extended to a meromorphic
function on C with a single simple pole at s = 1, and satisfies a functional
equation relating (p(s) and (p(1 — s): Let

A=27 R A(F)],

where d(F) denotes the discriminant of F. The functional equation then
reads:

AT ()2 r(s) = AT )T — 9721 — 5).
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If s = n is a natural number > 1, then the product of the Gamma-factors
on the right-hand side of the functional equation yields a pole of total order
r9, if n is even, and of total order 1 + 79, if n is odd. For s = n = 1, the
left-hand side of the functional equation has a simple pole, hence the order
of vanishing of the zeta-function of F' at s = 0 is equal to 1 + 79 — 1. For all
n > 2 the left-hand side of the functional equation at s = n is a positive real
number, hence the order of vanishing of {p(s) at s =1 —mn, n > 2, is equal
to ry if n is even and equal to r1 + 79, if n is odd. If we denote by d,, the
order of vanishing of the zeta-function at s = 1 — n, then we can summarize
the information as

ri+reo—1 ifn=1
dp=X r1+72 if n > 3 is odd
9 if n > 2is even

Dirichlet computed the residue of the zeta-function of F' at s = 1. This
result, the so-called Analytic Class Number Formula, computes the special
value (},(0) via the functional equation as follows:

Theorem 0.3. [Dirichlet]

sy hE

where hr denotes the class number of F', wr the number of roots of unity of
F', and Rp is the Dirichlet requlator.

We note that the order of vanishing of {z(s) at s = 0 is equal to the rank
of the unit group of or. The Dirichlet regulator map provides a logarithmic
embedding of the lattice 0% /u(F) into the real vectorspace R™ 772! and the
Dirichlet regulator is defined as the covolume of the image lattice. As an
example we consider F' = Q(+v/2): The fundamental unit is 1 + v/2, and the
Dirichlet regulator is simply log(1 + v/2).

Theorem 0.3 allows the following algebraic interpretation of the special
value of the Riemann zeta-function at s = 0: {(0) = —% simply expresses
the fact, that the regulator is trivial, the class number of Z is equal to 1 and

the order of the group of roots of unity in 7Z is 2.

Let us consider now the special values at 1 — n for n > 2.

It was only after the invention of the algebraic K-theory functors from
rings to abelian groups by Grothendieck (Kj), Bass (K1), Milnor (K3) and
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finally Quillen (K, n > 1) (cf. section 1) that an attempt could be made to
interpret the special values at 1 — n for n > 2 algebraically in the spirit of
Dirichlet’s class number formula. The following facts are known about the
K-theory of op (cf. section 1): First of all

Ky(op) 2Z e ClL(F), Ki(or)= o},

so that Theorem 0.3 can be reformulated as

_ ‘KO(OF)tors| ]
‘KI(OF)tors|

Borel (cf. [13]) determined the group structure of Quillen’s higher K-theory

¢*(0) = Rp.

groups: For n > 2 the K-theory groups Ko, _2(ofr) are finite and

Kop—1(or) =2 Z% & (finite).

In particular, for n > 1, the order of vanishing of (r at s = 1 —n is equal
to the rank of Ky, 1(op). In fact, Borel computed the rank by defining
higher regulator maps

pE(F) : KZn—l(OF) — R .

He showed that the kernel is finite and the image is a lattice of rank d,. The
covolume of this lattice is called the Borel regulator and denoted by RZ(F).
As a consequence Borel obtained

(p(1—n) =gn - RE(F)

(cf. [14]) with a non-zero rational number ¢,, hence a qualitative result in
the direction of generalizing Dirichlet’s class number formula. Borel’s result
confirms in the special case of number rings a general conjecture of Beilinson
about the relation between special values of L-functions and regulators for
smooth projective varieties over number fields (cf. [7]). Around 1971 Licht-
enbaum (cf. [64]) gave a conjectural interpretation of the rational numbers
gn- He suggested that the correct generalization of Dirichlet’s class number
formula should read:

Lichtenbaum Conjecture. For all n > 2:

Ch(1 —m) = 4200

= -RB(F
|K2n—1(0F)tors| n( )
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up to powers of 2.

A special case of this conjecture was formulated earlier by Birch and Tate

(cf. [93)):
Birch-Tate Conjecture. For a totally real number field

L Ks(or)]

Here for any integer n > 1 we denote by w,(F') the largest integer m,
such that Gal (F/F) acts trivially on the n-fold tensorproduct g&". In terms
of Galois cohomology this means

wn(F) = |H*(F,Q/Z(n))|.

The motivation for this conjecture came from Tate’s proof (cf. [93]) of an
analogous formula in the function field case, which we describe below. In
the special case F' = QQ we know that

(-1 =35

On the other hand Ko(Z) =2 Z /27 and w2(Q) = 24, which verifies the Birch-
Tate Conjecture for Q. Since it is known (cf. [59]) that K3(Z) = Z /487, we
see that the Lichtenbaum Conjecture (including the prime 2) reads
L |Ka(Z)|

|Ks(Z)]

a result, which lead Lichtenbaum to exclude powers of 2 in his formulation.

(-1 =

We note that the sign of (;.(1 —n), n > 2, is easy to determine from the
functional equation. One obtains:

1 ifn=1 mod4
) i —1)"1*72 ifn=2 mod4
sign ((r(1 —n)) = E—lg“ ifn=3 mod4
(

—1)" ifn=0 mod4

Let us have a closer look at the function field case, which — as always —
provided a lot of inspiration for the number field situation:
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Let X be a smooth projective connected curve over a finite field I, of
characteristic p. Let N, denote the number of rational points of X over
Fyr, where X=X XF, IF‘q denotes the corresponding curve over an algebraic
closure I, of IF;. The zeta-function of X is defined by

- (5. )

r=1

considered as a formal power series in Q[[T]]. Weil has shown that

@
2x(T) = Ty (1 =)
with 2
P(T) = T[(1 - i),
=1

where g is the genus of X and the «; are the eigenvalues of the Frobenius
_ 1
acting on the Jacobian variety J of X. They have absolute value ¢2.

To see the relation with the Dedekind zeta-functions of number fields one
defines

(x(s) = Zx(q")

for s € C. Let F' denote the function field of X. Thus F is a finite extension
of F,(T'), and

1
(x(s) = H W,

p
where the product extends over all primes in F.

To determine the values of the zeta-functions at s = 1 —n for n > 2
one uses étale cohomology. In fact, this cohomology theory was invented
by Grothendieck et al. to prove part of the Weil Conjectures for smooth
projective varieties over F,. Let us fix a prime [ # p. For our purposes
we can desribe the étale cohomology groups H}, (X,Q/Zi(n)) as the Ga-
lois cohomology groups of the maximal unramified extension of F'. Let us
assume for simplicity that p; C Fy. Let Foo = F(uec). Then Fo/F is a
Z-extension, i.e., I' = Gal (Fy/F') is isomorphic to Z;, generated by the
Frobenius automorphism 7. Let X, denote the Galois group of the max-
imal abelian unramified pro-l-extension of F,. This is a module over the
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Iwasawa-algebra A = Z[[T]]. It is easy to see from the Hochschild-Serre
spectral sequence that

Hy (X, Qu/Zi(n)) = Hg (X, Q/Zy(n))" = Hom (Xoo, Q/Zi(n))"

Iwasawa-theory now shows that the Kummer dual Hom (X, Q1 /Z(1))
of X is canonically isomorphic to the [-primary part J; of the Jacobian of
F, hence

Hom (Xeo, Qu/Zi(n)) = Ji(n — 1).

We obtain
HA(X,Q/Zi(n)) = Ji(n - 1),

n—1

the order of which is equal to the order of the kernel of 1 — ¢"~ "~ acting on

Jj, hence equal to the I-part of P;(¢'~™). We have shown the following:

|H},(X,Q/Zy(n))|
(1—g" (1 —-q")

Cx(1=n) ~

Here ~; means that both sides have the same [-adic valuation. The denom-
inator can also be interpreted in terms of étale cohomology:

| H (X, Qu/Zy(n))| = ¢" — 1

and
|HZ (X, Q1 /Zy(n))| = ¢* L — 1.

Moreover, since all the cohomology groups involved are finite, we have
Hi (X, Qu/Zi(n)) = HiT (X, Zy(n)).
We obtain:

Theorem 0.4. Let X be a smooth projective connected curve over a finite
field By of characteristic p. For all n > 2 and all primes | # p we have

|HG (X, Q1 /Z(n))]
|Hgy(X, Q1 /Zy(n))| - [ HE(X, Qu /Z(n))]
|HZ,(X, Zy(n))]
|H g (X, Za(n))| - [HE(X, Zy(n))]

Cx(I—=n) ~

~l
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Theorem 0.4 expresses the [-primary part of the zeta-function as an Eu-
ler characteristic in étale cohomology. It generalizes to arbitrary smooth
projective connected schemes (cf. [5]).

Since we considered so far projective curves, which is the right framework
in the function field case, we have not obtained a complete analogy with the
number field case due to the presence of infinite primes. Let or denote the
integral closure of IF,[T'] in the function field F. The maximal ideals in op
are the finite primes in F', and the associated zeta-function is defined via

1
= 7=~

p fin.

Therefore the two zeta-functions differ by the product of the Euler factors
at the infinite primes of F':

Cr(s) = Cx(s) - [T = N(w) ™).
v|oo
To obtain now an analogous description for the zeta-function (r(s) we use
the exact localization sequence in étale cohomology (cf. section 2):
0 — He(X,Q/Zi(n)) — Hg(or, Q/Zu(n))
— D H (R, Qu/Zu(n — 1)) — HG(X, Qu/Z(n)) — 0

v]oo

together with the facts that

HZ (op,Q/Z4(n)) = 0

and
|H(Fy,Q/Zi(n — 1)) = N(o)" ' — L.
The cohomological analog of Lichtenbaum’s Conjecture in the function field

case is therefore:

Theorem 0.5. Let F' be a global field of characteristic p > 0. For all n > 2
and all primes | # p we have

l |HZ (oF, Zi(n))|
wp (F) )

Cr(1—mn) ~
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To obtain a global formula let us define

H?(op,Z(n)) = [[ Hélor, Zi(n)),
l#charF

and let h,(F) denote the order of this finite group. Then

Corollary 0.6. Let F be a global field of characteristic p > 0. For alln > 2
we have

|H?(or, Z(n))| _

Cp(l—n) =+ wy, (F) wn(F)

For a number field F' with ring of integers or and a prime [ we use
the étale cohomology groups, that can be viewed as the Galois cohomology
groups of the maximal algebraic extension of F', which is unramified outside
primes above [ and oo, in other words, we are looking at the étale cohomology
groups of specop[1/1] for all I. We denote these cohomology groups simply by
H} (0%, Zy(n)), where o}, = op[}]. The relation to the algebraic K-theory
groups of the ring of integers in a global field F' is given via étale Chern

characters for | # char (F), i =1,2,
Kon—i(or) ® Zi — H (0, Zi(n))

defined by Soulé and Dwyer-Friedlander (cf. [85],[23], section 2), which
are surjective for all | # 2 and for [ = 2 if F' is a function field or if
v/—1 € F. They are conjectured to be isomorphisms in these cases (Quillen-
Lichtenbaum Conjecture). It follows from Tate’s computation of the Ko-
group of a global field (cf. [94]) that the Quillen-Lichtenbaum Conjecture is
true for n =14 = 2, i.e.,

Ko(or) ® 7y = Hg (0, Zy(n))

for all | # char (F). In general, the Quillen-Lichtenbaum Conjecture is
a consequence of a Conjecture of Bloch and Kato (cf. section 2), which
seems to have been proven by Rost and Voevodsky. Since - by a result of
Geisser-Levine [31] - K,,(F)(p) = 0 for all fields F' of characteristic p, and
all m > 2, we can reformulate Corollary 0.6. under the assumption of the
Quillen-Lichtenbaum Conjecture as follows:
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Theorem 0.7. Let F be a global field of characteristic p > 0. If the Quillen-
Lichtenbaum Conjecture is true for all | # p, then we have for all n > 2:

| Kon—2(or)| |Kan—2(oF)|
1—-n)==% =+ .
UM =T Kanior)
The special case n = 2: (p(—1) = i% is due to Tate and led to

the formulation of the Birch-Tate Conjecture for number fields.

Let us return now to the situation of a number field F. Iwasawa (cf. [44])
extensively studied the theory of Z,-extensions for any prime p, in particular
the cyclotomic Zy-extension of a totally real number field (cf. section 3). The
analog of the Jacobian is a certain Iwasawa-module, whose characteristic
polynomial is related to p-adic L-functions via the so-called Main Conjecture,
which has been proven by Wiles (cf. [101]) for odd primes p and for p = 2
in the case F = Q. As a consequence we obtain the following analog of 0.6:

Theorem 0.8. [Wiles] Let F be a totally real number field with ring of
integers op. For all even integers n > 2:

by (F)

wn(F)

CF(l — n) =+
up to powers of 2. If F is abelian over Q, then the formula also gives the
correct powers of 2.

Again, for n = 2 this can be reformulated in terms of K-groups and
verifies the Birch-Tate Conjecture:

Corollary 0.9. Let F be a totally real abelian number field. Then

|K2(oF)|

Cr(-1) === 205

For arbitrary totally real number fields the same result holds up to powers
of 2.

The deviation between K3(F) = K3(or) and H°(F,Q/Z(n)) is known
(cf. [67]): There is an exact sequence

0 — KM(F) = (2)22)""F) - K3(F) — H°(F,Q/Z(n)) — 0.

Here K (F) denotes Milnor’s K3-group (cf. section 1). Corollary 0.9 can
therefore be reformulated as:
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Corollary 0.10. Let F be a totally real abelian number field of degree r1.

Then
|K2(oF)|

| Ks(or)|
For arbitrary totally real number fields the same result holds up to powers
of 2.

For arbitrary n > 2 the deviation in the 2-torsion between K-theory and
étale cohomology is known from Voevodsky’s proof of the Milnor Conjec-
ture (cf. [97],[49],[81]). If we assume that the Quillen-Lichtenbaum Conjec-
ture holds for odd primes p, then we can reformulate Theorem 0.8 both in
terms of K-groups and in terms of motivic cohomology groups H (o, Z(n))

(ct. [30]):

Theorem 0.11. Let F be a totally real abelian number field of degree rq
and let n > 2 be even. If the Quillen-Lichtenbaum Conjecture holds for odd
primes p, then

Cr(—1) =2 .

|Kon—2(or)| _  |H3,(0r,Z(n))|
| Kon—1(0F)| |H 4 (0r, Z(n))sors|

(r(l—n)=£27"
for all even n > 2.

So far we have dealt with the situation that the zeta-function does not
vanish at 1 — n, hence no regulators are involved. There is an analogous
relative situation, which does not involve regulators, and which is essential
for the general case: Let L/F be a CM-extension of number fields, and let
X denote the non-trivial Artin character of Gal (L/F'). Then

CL(s) = Cr(s) - Lr(x, s),

where Lr(x,s) denotes the Artin L-function attached to x. For odd integers
n > 1 the orders of vanishing of {;(s) and (p(s) at s = 1 — n are the same,
hence Lp(x,1 —n) is a non-zero rational number. For n = 1 this number is
classically determined by the relative class number formula (cf. [99], Chapter
4):

2 hT
LF X’O = A T v
0= W
where r1 = [F : Q], h~ = Z—l’; is the relative class number, and @ is the

so-called @-index:
Q = [of, : oF - p(L)];

which is equal to 1 or 2. For larger odd values of n the analog is:
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Theorem 0.12. [53] Let L/F be an abelian CM-extension of number fields
and n > 3 odd. Then

( o+l p
Lr(x,1—n)=£——" .
) Qn wn(L)
For general CM-extensions the same result is true up to powers of 2.
Here
b — hn (L)
" ha(F)

and @, is the following generalized ()-index, which again is equal to either
1 or 2:

Qn = [Hgy (L, Za(n)) = Hy(F, Za(n)) - H(L, Q[ Za(n))].

In the following main result towards the general Lichtenbaum Conjec-
tures both Theorem 0.7 and Theorem 0.12 are needed, although only up to
2-torsion.

Theorem 0.13. [54] Let F' be an abelian number field. Then for all n > 2:

(1 —m) = +2

up to powers of 2.

The formulation uses the Beilinson regulator R, (F) and not the Borel
regulator. The difference between the two regulators is now known due to
a recent result of Burgos-Gil [16], who showed that the Borel regulator map
is twice the Beilinson regulator map, hence

RE(F) = 2dn Rn(F)a

where - as before - d,, is the rank of Ko, 1(F).

It should be pointed out that the formulation in [54] is not quite correct,
it includes some Euler factors, which were removed in [57]. Part of the proof
was also based on an incorrect result by Villemot. The necessary adjustments
of the proof can be found in an appendix to [8]. An outline of the proof is
given in section 4. For a different proof cf. [42].
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If we assume that the Quillen-Lichtenbaum Conjecture holds for odd
primes p, then Theorem 0.13 shows that Lichtenbaum’s original conjecture
is true for abelian fields. On the other hand the 2-primary information in
Theorem 0.12 indicates that one is forced to replace K-groups by motivic co-
homology groups to obtain a formulation including the exact power of 2. Let
H},(F,Z(n)) denote H},(F,Z(n)) modulo torsion. This is a free Z-module
of rank d,,. Let R)(F) denote the covolume of the image of H},(F,Z(n))
under the Beilinson regulator map. This is the motivic regulator and the cor-
rect motivic formulation of the Lichtenbaum Conjecture including 2-primary
information should be:

Motivic formulation of the Lichtenbaum Conjecture. For any num-
ber field F and any integer n > 2:

[ H (B Z)] o
((1—n)= -R(F).
F( ) |H/1\/[(FaZ(n))tors| " ( )
If L/F is a CM-extension of number fields and if n > 3 is odd, then one

can show that
2

T Qn’
hence the motivic formulation of the Lichtenbaum Conjecture is consistent
with Theorem 0.12. A recent result of Ion Rada, a student of mine, shows

that for complex abelian fields and odd integers n > 3 the cohomological
formulation in Theorem 0.13 also gives the correct powers of 2, up to a

[Ry(D) : Ry (F)]

certain Iwasawa p-invariant, which should be trivial.

Let us now return to Euler’s computations of the values of the Riemann
zeta-function at odd negative integers 1 — n, n > 2 even. Corollary 0.2 and
Theorem 0.8 yield

By _ (@

As we pointed out the numbers w,(Q) are easy to calculate: w,(Q) is the
maximal number m, such that Gal (Q((,,)/Q) has exponent m. Therefore
Euler’s result essentially computes h,(Q) in terms of Bernoulli numbers,
and therefore - assuming the Quillen-Lichtenbaum Conjecture for odd p -
the orders of the K-theory groups Ko, _2(Z) for even n > 2 (cf. section 5).

((1-m)=-
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Examples.

1. For n = 4 we have

1 Q)
=10 T Tm@
We have
wy(Q) =2"-3-5 = 240,
so that
ha(Q) =2,
which predicts
Ke(Z)=0
2. For n = 12 we have
691 h12(Q)
—11) = - ’
¢(-11) 23.32.5.7-13  w3(Q)
We have
wip(Q) =2"-3%5-7-13,
so that

h12(Q) = 2- 691,

which predicts
Koo(Z) = 7./6917Z.

The structure of the cohomology groups H?(Z, Z(n)) and of the K-groups
Kop_2(Z) is related to Vandiver’s Conjecture. It can be shown (cf. [58]
and section 5) that Vandiver’s Conjecture for the prime p is equivalent to
the vanishing of HZ(Z,Zp(n)) for all odd n > 3. If we assume Vandiver’s
Conjecture for all p, then the motivic cohomology groups H4,(Z,Z(n)) are
cyclic for all even n > 2. Using the Quillen-Lichtenbaum Conjecture for odd
primes this translates into: Kjy,,(Z) is trivial for all m > 1 if and only if
Vandiver’s Conjecture holds for all primes, and in this case the K-groups
Kim—2(Z) are cyclic for all m > 1. The result of Rognes-Soulé (cf. [80])
that K4(Z) is trivial can be viewed as supporting evidence for Vandiver’s
Conjecture.
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Let us assume that Vandiver’s Conjecture holds for all primes. Then for
n > 3 odd we have h,(Q) = 1. Since w,(Q) = 2 for n odd, Theorem 0.13
implies that
¢*(1=n) =£R,(Q)

up to powers of 2. The K-groups Ko,_1(Q) have rank 1 for n > 3 odd, and
the Beilinson regulator R, (Q) should be simply given by the n-th polylog-
arithm evaluated on a generator of Ko,—1(Q). In particular, for n = 3 we
obtain

((3) = ~m*R3(Q)

up to powers of 2, and Goncharov (cf. [35]) has shown that in fact R3(Q) is
given by a trilogarithm.
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1 K-theory of rings of integers in number fields

For an arbitrary ring R with 1 the Grothendieck group Ko(R) is the free
abelian group generated by isomorphism classes [P] of finitely generated
projective left R-modules P modulo the subgroup generated by

[Pl +[Q - [Pod]

Two isomorphism classes [P] and [Q] are equal in Ky(R) if and only if P
and @) are stably isomorphic, i.e., P@® R" = () & R" for some n.

Examples.
1. If R is a local ring or a principal ideal domain, then Ky(R) =2 Z.

2. If R is the endomorphism ring of an infinite-dimensional vectorspace,

then Ko(R) is trivial.

3. If R is a Dedekind domain, then there is a natural isomorphism
Ky(R) =2 Za® CI(R),
where CI(R) is the class-group of R (cf. e.g. [T1]).

The abelian group K;(R) is defined as the abelianization of the infinite
general linear group GL(R) = Up,>1GL,(R):

Ki(R) = GL(R)/[GL(R), GL(R)].

Let E,(R) denote the subgroup of GL,(R) generated by all elementary
matrices
Eij(a):In+aeij, 1<i#j<n, a€R,

where e;; are the standard matrix units. Let E(R) = Up>1E,(R). The
generators F;;(a) satisfy the following ”trivial” relations:

Eij(a)Eij(b) = Eij(a+D),
[Eij(a), Ejk(b)] = Ei(ab)  ifi#k,
B = 1 Witk j#£L
The second relation shows that E,(R) = [E,(R),E,(R)] is a perfect
group for n > 3, in particular F(R) is perfect. It is easy to see (“Whitehead’s

Lemma”) that
E(R) = [GL(R),GL(R)].
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Examples.

1. If R is a local ring, then K1(R) =2 R*/[R*, R*| (Dieudonné determi-
nant).

2. Assume that R is commutative. Then the determinant induces a

canonical splitting
Ki(R) = R* ® SK;(R),

where SK1(R) = SL(R)/E(R). Moreover, by a result of Suslin [89] the
group E,(R) is normal in GL,(R), and therefore one obtains unstable K-
groups

Kl,n = GLn(R)/En(R)

for n > 3. These groups stabilize depending on the Krull dimension of R,
in particular for a Dedekind domain one has SK1(R) = SLy(R)/Ey(R) for
n > 3.

3. If R is the ring of integers in a number field, then SK1(R) = 0, hence
K;(R) = R".

This result is deep and follows from the solution of the congruence subgroup
problem in [3].

To define Milnor’s group K2(R) of a ring R with 1 we note that the
relations between elementary matrices listed above hold independent of the
ring R, hence are universal relations in E(R). Let St(R) denote the free
abelian group with generators z;j(a), i # j, a € R, modulo the subgroup
generated by the following universal relations:

zij(a)zij(b) = zij(a+b),
[zij(a), zjk(b)] = zik(ab) if i #k,
[zij(a), zi(D)] = 1 if i#k, j#I

St(R) is the so-called Steinberg group. Sending z;;(a) to E;;(a) defines
a surjective map St(R) — E(R). Since E(R) is perfect, it has a universal
central extension, and it can be shown that the Steinberg group St(R) is the
universal central extension of F(R) (cf. [71]). Milnor defines K5(R) as the
kernel of the natural surjection St(R) — E(R). In particular, Ko(R) is the
center of St(R), hence abelian. Furthermore, the theory of universal central
extensions implies that

K3 (R) = Hy(E(R), Z).
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(cf. [71])

For a field F' the group K5(F') has been computed by Matsumoto as the
universal symbol group:

Ky(F) =F'@F/(u®1—uju#1),
in other words K5 (F') is defined by generators {u, v}, u,v € F* and relations

{uv,w} = {u,w}{v,w}
{u,vw} = {u,v}{u,w}
{u,1—u} = L

Immediate consequences are

{u’v}_l = {U’u}
{u,—u} = 1.

Examples. 1. For a finite field F, the group Ko(Fy) is trivial. ([71])
2. Ko(R) =2 Z/27Z & (uniquely divisible). ([90])
3. K2(C) is uniquely divisible. ([90])
4. Ko(Z) =2 Z )27, a result due to Silvester (cf. [T71]).

Motivated by Matsumoto’s theorem Milnor introduced higher K-theory
groups KM (F) of a field F (cf. [70]) - now called Milnor K-groups - as the
quotient of the n-fold tensor product F* ® F* ® --- ® F'* by the subgroup
generated by all u1 ® - - - ® up, such that u; +u; = 0 for some i # j. Let m be
an integer prime to the characteristic of #'. Then the cup-product induces a
homomorphism

G KM (F) fm — H™(F, &),

called the Galois symbol. Based on the relation to quadratic forms Milnor
conjectured that for m = 2 the Galois symbols g, o should be isomorphisms
for all n. This Conjecture was extended by Bloch-Kato to all values of m.
For global fields these conjectures follow from Tate’s fundamental description
of the K5 of a global field F' in terms of Galois cohomology in [93], and from
the computation of the higher Milnor K-groups:

Ky (F) = (Z/22)"
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for n > 3 by Bass-Tate in [4].

Merkurjev-Suslin proved the Bloch-Kato Conjecture for n = 2 and arbi-
trary fields F, i.e., they showed that the homomorphism

g2,m : Ko(F)/m — H?(F, u;?)

is an isomorphism for all m, thus extending Tate’s result to arbitrary fields

(ct. [66]).

Voevodsky ([97]) proved the Milnor Conjecture for arbitrary fields and
provided a general approach to the Bloch-Kato Conjecture. It seems that
Rost and Voevodsky recently completed the proof of the Bloch-Kato Con-
jecture. The striking consequences of these results to the K-theory of rings
of integers will be discussed in the next section.

Let us turn now to Quillen’s definition of higher algebraic K-groups:
Recall that
K1 (R) = H\(GL(R),Z)

and
K»(R) = Hy(E(R),Z),

so that in the classical situation the K-groups are closely related to the
integral homology of GL(R). Quillen’s idea was to look for a topological
space, whose integral homology as a space is closely related to the integral
homology of GL(R), and to define the higher K-groups as homotopy groups
of that space.

As a first step one looks at the classifying space BGL(R) of GL(R). Up
to homotopy equivalence this space is characterized by the properties that
it is connected and its homotopy groups are:

m1(BGL(R)) = GL(R)

mi(BGL(R)) =0 for > 2.

Furthermore:
Ho(BGL(R), Z) = Ho(GL(R), Z)

for all n > 0. Quillen’s +—construction now adds 2-cells and 3-cells to
BGL(R) in such a way that the new space BGL(R)" has the same integral
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homology as BGL(R) and the inclusion BGL(R) — BGL(R)" induces the
quotient map

m(BGL(R)) = GL(R) — m(BGL(R)* = GL(R)/E(R).

For any ring R and n > 1 the higher K-theory groups K,(R) are now
defined as
Kn(R) = mo(BGL(R) ™).

We obtain a homomorphism

K,(R) mo(BGL(R)Y) — H,(BGL(R)",Z)

H,(BGL(R),Z) = Hn(GL(R), Z)

called the Hurewicz homomorphism, which gives the expected relation to the
integral homology of GL(R).

Of course, for n = 1, we obtain as before
Ki(R) = Hi(GL(R),Z) = GL(R)® = GL(R)/E(R).

Let n = 2. Since BE(R)™" is the universal covering space of BGL(R)" and
m1(BE(R)™") is trivial, Hurewicz’ theorem implies that

K>(R) = m(BGL(R)") = my(BE(R)") = Hy(BE(R)") = Hy(E(R), Z),
hence Quillen’s definition of K9(R) agrees with Milnor’s.

The Kronecker product of matrices induces a homomorphism
GL(R) x GL(R) — GL(R),

which induces on BGL(R)™" the structure of a commutative H-group (cf. [65]).
Roughly speaking this means that BGL(R)™" satisfies the axioms of a com-
mutative group up to homotopy equivalence. As a consequence one obtains
natural products

Ki(R) ® Kj(R) = K1 (R)

for all 4,5 > 0. These products satisfy

zy = (=1)yz
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for z € K;(R) and y € K;(R) ([65]). As an example, fori=j =1and F a
field, the product F* x F* — Ky(F) is given by

(u,v) — {u,v}fl.

Another consequence of the fact that BGLT(R) is an H-space is that
the Hurewicz map is injective modulo torsion, i.e., that

Kn(R) ® Q — H,(GL(R),Q))

is injective. The image can be identified with the so-called primitive part of
the rational homology, a result, which has been used by Borel (cf. [13]) to
define regulator maps on higher algebraic K-theory groups.

Let us state now some of Quillen’s main results:

Theorem 1.1. (Quillen [74]) Let F =, be a finite field with q elements.
Then for all n > 1:
KQn(Fq) =0

Kon-1(Fq) = Z/(q" — 1)Z.
We note that this can be reformulated in terms of Galois cohomology as
Kon(Fy) = H*(Fy, Z(n)) = 0

and
Kon1(F,) = H' (F,, Z(n)) = HO(E,, Q/Z(n).

As is well-known the zeta-function of the finite field F, equals

1
C]Fq (3) = 1_ q_sa
hence for n > 0 we obtain
_ | Ko (Fy)| |H?(F,, Z(n))|
Cr, (—n) = —[Kon_1(Fy)| 7! = — = — ,
: Fon ) = 1, )~ (R, 2(n)|

one of the results which inspired the Lichtenbaum Conjecture.

Quillen also calculated the higher K-groups of the algebraic closure I_Fp:
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Theorem 1.2. (Quillen [74]) For n > 1:
Kon(F,) =0

and

K2n71 (Fp) = @l;ﬁp@l /Zl
The fact that the K-theory of F, has no p-torsion is true more generally:

Theorem 1.3. (Geisser-Levine [31]) Let F' be a field of positive charac-
teristic p. Then the K-groups of F' have no p-torsion.

For rings of integers in global fields Quillen showed

Theorem 1.4. (Quillen [76]) Let or be the ring of integers in a global
field. For all n > 0 the K-theory groups K,(or) are finitely generated.

The ranks of these finitely generated groups were determined by Borel
for number fields:

Theorem 1.5. (Borel [13]) For n > 1 the groups Ko, (or) are finite and

ri+re ifnisodd >1
79 if n is even.

rhz (Kanes (o)) = {

The finiteness of K2(or) had been previously obtained by Garland ([29]).

The proofs of both these results use Geometry of numbers, as in the
classical case of Dirichlet’s Unit Theorem and the proof of the finiteness of
the class number.

Borel’s results gave the first indication that the even K-groups of a ring
of integers behave like higher-dimensional analogs of the class groups, and
the odd K-groups like higher-dimensional analogs of the unit groups.

The powerful topological definition of higher algebraic K-groups has
many interesting consequences, one of them is the long exact localization
sequence, which comes from the exact sequence of a fibration. For Dedekind
rings R with finite residue fields k, and quotient field F' Theorem 1.1 implies
that the long exact localization sequence gives 5-term exact sequences of the
form

0— KQn(R) — KQn(F) — @pKQn_l(kp) — KQn_l(R) — Kgn_l(F) — 0
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for n > 1. Soulé (cf. [86]) showed that for the ring of integers or in a global
field the result gets even better:

Kon—1(or) = Kop—1(F)
for all n > 2, and there are short exact sequences
0— KQn(OF) — Kzn(F) — @p KQn_l(k‘p) —0

for all n > 1. The first result gives an indication of the fact that higher
K-theory of rings of integers is in a sense “easier” than the classical Ky and
K. For n =1 the last sequence reads

0 = Ko(or) = Ko(F) D @p K1 (ky) — 0.

The map X : Ko(F) — @, Ki(kp) is explicitly given by the so-called tame
symbol: For each prime ideal p consider the map

A : Ko(F) = Ki(kp) = K

defined by

UUP (U)

Mo({u,v}) = (=17l mod p,

Ve (W)

where v, denotes the p-adic valuation, and take A = @\,. Therefore Ky(op) =
ker A, and hence Ks(or) is also referred to as the tame kernel.
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2 Chern characters and étale cohomology

The theory of Chern classes and Chern characters is to a large extent purely
formal and is e.g. described in [33] and in Schneider’s survey article in [7].
It extends the classical definition of Grothendieck’s of Chern classes for vec-
torbundles over quasi-projective varieties. The Chern classes are essentially
defined on the homology groups H,(GL(R),Z) and take values in any “rea-
sonable” cohomology theory. The Chern classes on higher K-theory groups
are then simply obtained by composition with the Hurewicz map.

Let us first consider Chern characters with values in étale cohomology
groups. For our purposes we can use a description of étale cohomology in
terms of Galois cohomology, valid for global fields F' and rings of integers op.
Fix a prime p # char (F). Let ng) denote the maximal algebraic extension
of F', which is unramified outside primes above p and infinite primes, and
let Gg’) = Gal(Q%p)/F). The étale cohomology groups H}, (spec OF[%],ME?W?)
of the scheme spec OF[%)] with values in the étale sheaf uff’n’} can be identified
with the Galois cohomology groups H *(Gg), u%‘). Here the Galois group
G%f) acts diagonally on the n-fold tensor product uf?ﬁ . To simplify notations
we will write H}, (0%, pom ) or Hj (0, Z/p™(n)), where o, indicates that we
are working over OF[%] and not over op. We will also denote by

HE, (0, Zp(n)) = Yim HE (0, i)
the p-adic étale cohomology groups and set
Hgt(o%’Qp/Zp(”)) = lgant(o%,ufﬁ).
We note the following relationship: For each n € Z the exact sequence
0= Zp(n) = Qy(n) = Qy(n)/Zp(n) =0

gives rise to a long exact sequence in étale cohomology and the kernels and
cokernels of the boundary maps

d; : Hét_l(OIFan/Zp(n)) - Hét(OIFaZp(")) (i>1)

can be described as follows (cf. [94]): The kernel of d; is the maximal divisible
subgroup of H Y(0,Qy/Zy(n)) and the image of §; is the torsion subgroup



220 M. Kolster

of H: (0%, Zy(n)). In particular this implies that the torsion subgroup of
H (0%, Zp(n)) is isomorphic to HY, (0%, Qp/Zp(n)):

€
He’lt (OIFa Zp(n))tors = He(i)t (OIFa Q /Zp(”))

The following is known about the finitely generated p-adic étale coho-
mology groups for rings of integers in global fields:

Proposition 2.1. 1. HY(0},Zy(n)) =0 for n #0 ([85]).
2. For k > 3: H% (0, Zy(n)) = 0 if p is odd ([85]).

kg ~ | (Z/22)"F) if k4 n is even
3. For k > 3: H,(0%, Zo(n)) = { 0 otherwise.

The relation between the étale cohomology groups of specoF[%] and
spec F' — the latter being isomorphic to the continuous Galois cohomology
groups of F' — is provided by Soulé’s exact localisation sequence (cf. [85]), a
consequence of the Leray spectral sequence in étale cohomology:

Proposition 2.2. There is a long exact sequence
0— Hét(OIFalj';?Tg) - Hel’t(F’ ME?WTIL) - @ngt(kvau;?Tgil) - Hgt(OIF,II';?Tg) o
with v running through the finite places of F' not dividing p.

Since HY, (ky, Zp(n — 1)) = 0 for n # 1, passing to the projective limit
in the first part of the localization sequence gives the following interesting
consequence:

Corollary 2.3. For all n # 1 there is an isomorphism
H (0, Zp(n)) = Hgy(F, Zy(n)).

For n = 1 the étale cohomology groups H, (0, u,m) have a classical
interpretation. Let G, denote the multiplicative group scheme. The étale
cohomology groups H, (0%, Gy, ) are known (cf. [68], Chapter III):

L.
Hg (0, Gm) = OF[E]

HY, (0, Gn) = 01(01:[%1)

H2, (0, Grn) Br(oF[}DJ).
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Here Br(oF[z—lj]) denotes the subgroup of the Brauer group Br(F') of F con-
sisting of all classes of central simple F-algebras, which are split outside of
primes above p. As an abelian group Br(oF[%]) is isomorphic to (Q/Z)% !,
where s;, is the number of primes in F' above p.

Multiplication by p™ yields a short exact sequence
0= 17" = G G — 0,
hence short exact sequences for 7 = 1, 2:
0— Hét_l(OIFaGm)/pm — Hy (0, ppm) = pm H (07, G ) — 0.

Here we denote for any abelian group A by ,m» A the subgroup of A of all
elements of exponent p™. Let us now simply write U}, for OF[%]*, CIU(F)" for

Cl(oF[%]) and Br(F)' for Br(oF[I%]). Then we can rewrite these short exact
sequences as follows:

0 — Uk /UE" — HL (0%, ppm) — pmCI(F) — 0
and
0 — CI(F)'JCU(F)P" — HZ (0}, iym) = pm Br(F)" — 0.
Passing to the inverse limit yields
HY (0%, Zy(1)) 2 Zp, @ Up

and
H2,(0l, Zy(1)) = CUF) (p) © Zy7 .

The localization sequence provides a description of H ét (0%, ppm) as a sub-

group of H} (F, ppm) = F* /F*P" (Kummer isomorphism). Let A denote
the subgroup of F’* of all z, such that the p-adic valuation of z is divisible
by p™ for all non-p-adic p. Then Ap contains F*P" and

Hyi (0, ppm) = Ap/F*P".

We note that in general the exact sequence

0 — Z/p™Z(n) = Zp(n) D> Zp(n) — 0

gives rise to the so-called Bockstein sequences in étale cohomology: For i > 1
we have short exact sequences

0— Hé;l(oﬁ,Zp(n))/pm — Hét(o'F,Z/me(n)) — pmHe?t(o}p,Zp(n)) - 0.
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For n =1 and 7 = 1, 2 these yield exactly the sequences discussed above.

The relation between algebraic K-theory and p-adic étale cohomology
groups in degrees 1 and 2 is provided by étale Chern characters defined by
Soulé in [85]: He constructed homomorphisms

chg,pg : Kon—i(or) ® Zp — Hgt (oF, Zp(n))

for i = 1,2, n > 2, and p odd, and proved surjectivity. A different approach,
which worked also for the prime 2 and used étale K-theory, was given by
Dwyer-Friedlander ([23]). They extended the surjectivity result to the prime
2 provided v/—1 is contained in F. The Quillen-Lichtenbaum Conjecture
predicts the following:

Quillen-Lichtenbaum Conjecture 2.4. For a global field F the étale
Chern characters

ch{") : Kon—i(or) ® Ly — Hiy(0lp, Zy(n))

are isomorphisms for n > 2,1 = 1,2, unless p = 2 and F is a number field
with a real embedding.

For 2n — i = 2 the results of Tate and Soulé imply that the Quillen-
Lichtenbaum Conjecture holds for all primes p including p = 2, i.e., there
are isomorphisms

K (or)(p) = Hi (0, Zy(2))

for all p. It is worth mentioning that many results about the structure of
Ks(oF) for number rings can be obtained via these isomorphisms from the
corresponding results about étale cohomology groups. We will give examples
below.

For 2n — i = 3 results of Merkurjev-Suslin [67] and Levine [61] show that
the Quillen-Lichtenbaum Conjecture is true for K3(op) = K3(F). Moreover
they also show that the kernel of the surjection K3(F) ® Zy — H}, (F, Z3(2))
is isomorphic to Milnor’s KM (F) = (Z/2Z)"F) | i.e., we obtain a short exact
sequence

0 — (2/22)"F) 5 K3(F) @ Zy — HJ(F,Zy(2)) — 0.

For any field F the quotient K3(F)/ K} (F) is called the undecomposable
K3 of F and denoted by K3(F);nq-
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In general, the Quillen-Lichtenbaum Conjecture is a consequence of the
Bloch-Kato Conjecture - we will sketch a proof of this below. On the other
hand the Bloch-Kato Conjecture seems to have been proven by Rost and
Voevodsky, and therefore the same would also be true for the Quillen-
Lichtenbaum Conjecture.

It is worth mentioning that Hesselholt and Madsen ([40]) proved the
Quillen-Lichtenbaum Conjecture for local fields.

For 2n —i =1, hence n =4 = 1, we also have a Chern character
chf) : Ky (or[1/p]) ® Zy — HE (0, Zy(1)).
We have seen above that
Hg, (o, Zp(1)) = op[1/p]" ® Ly,
(p)

and the Chern character chyj can be identified with the determinant.

The relation between K-groups and dyadic étale cohomology groups in
the exceptional case that F' has a real embedding is given below in Theo-
rem 2.8.

From the results of Soulé and Dwyer-Friedlander together with Theorem
1.5 we obtain the structure of the étale cohomology groups H, (0%, Zy(n))
for 2 = 1,2 and n > 2. It should be pointed out that at present there is no
“direct” approach, i.e., one which does not use Borel’s structure theorem for
higher K-groups.

Corollary 2.5. Let n > 2. Then H2(o%, Zp(n)) is finite and trivial for
almost all primes p, and

ri+ry ifnisodd >1
T9 if n is even.

vl Ao Zyln) = {
We note the following two consequences:

Since HZ, (0, Zp(n)) is finite for n > 2, we obtain HZ (o, Qy(n)) = 0,
hence the boundary map

03 : Hgt(OIFa@p/Zp(”)) — Hg’t(o'F,Zp(n))

is an isomorphism, and therefore for n > 2 we obtain HZ, (0%, Q,/Zy(n)) = 0
unless p = 2, n odd, and F' has a real embedding. We note that the vanishing
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of HZ (0%, Q,/Z,(0)) is equivalent to Leopoldt’s Conjecture. The vanishing
of H2 (0%, Qy/Zy(n)) for negative n is a Conjecture of P. Schneider (cf. [82]).
Of course HZ (', Qy/Z,(1)) = Br(F)'(p) = (Qy/Zp)*»~! does not vanish in
general.

For fixed n > 2 the étale cohomology group Hy (0}, Zy(n)) is torsion
precisely when F' is totally real and n is odd. If this is the case then the
boundary map Jo gives an isomorphism

Hét(o%,Qp/Zp(n)) = He?t(olFazp(n))-

Assume now that F' contains a primitive p-th root of unity. Then
Hy, (0, Z/pZ(n)) = Z[pZ(n — 1) ® Hg (0, Z/pZ(1)),

hence
rkp (Hey (0, Z/pZ(n))) = rky (Hg, (op, Z/pZ(1))).-

As before, let s, denote the number of p-adic primes in F'. By Dirichlet’s

unit theorem the quotient U}/ U;,? is isomorphic to (Z/pZ) T 25> in par-
!

ticular UL /U7 is a pure subgroup of H}, (0}, Z/pZ(n)), hence the sequence

0— U}/U;f — Hy (0, pp) = pCU(F) =0
splits, and we obtain
rky (Hi (0%, Z/pZ(1))) = 11 + 12 + 5, + rky (CI(F)").
On the other hand the Bockstein sequence
0 = Hg (0, Zy(n)) /p = Hg(0p, Z/pZ(n)) = pHE (0p, Zp(n)) = 0

splits as well, since

L N (Z/pZ)TﬁL”+1 if n is odd
Hg (0, Zp(n))/p = { (Z/pZ)”J’l if n is even

is also a pure subgroup of H}, (0%, Z/pZ(n)). We therefore obtain the fol-
lowing calculation of the p-rank of HZ (0, Zp(n)):
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Proposition 2.6. If F' contains a primitive p-th root of unity, then for all
n > 2

- | sp— 147k, (CIF)) if n is odd

rky (Hi(op, Zp(n)) = { 1+ sp — 14+ 71ky (CU(F)') if n is even
In particular, still assuming yu, C F, we see that HZ, (0}, Zy(n)) vanishes
if and only if F' contains only one p-adic prime, the class group CI(F)" has

no p-torsion, and F' is totally complex in case n is even. For n = 2 we recover
Tate’s p-rank formulas for Ks(op) (cf. [94]).

We now turn our attention to the relation between K-groups and mo-
tivic cohomology. There have been several definitions of suitable motivic
cohomology groups for smooth projective varieties X over a field F'. We use
Bloch’s higher Chow groups to define motivic cohomology groups for a field
F:

H'\((F,Z(n)) := CH"(F,Z(2n — 1)).

These cohomology groups are isomorphic to the ones defined by Levine
(cf. [62]) and by Voevodsky (cf. [91]).

In a similar way one defines motivic cohomology groups with finite coef-
ficients. The definition also extends to Dedekind rings (cf. [30]).

Pushin (cf. [73]) has constructed Chern classes and characters from K-
theory to motivic cohomology, in particular we have for a global field F
Chern characters

chit : Kop—i(F) = Hj((F, Z(n))

for n > 2 and ¢ = 1, 2, which induce the étale Chern characters after tensor-
ing by Zy.

Let us now give the essential ingredients in the well-known proof that the
Quillen-Lichtenbaum Conjecture follows from the Bloch-Kato Conjecture:

Theorem 2.7. Let p be an odd prime, and assume that the Bloch-Kato
Conjecture holds for powers of p, i.e., the Galois symbol

Gnge : KM (F)p” = H(F,pSr)

18 an isomorphims for all v > 1 and all fields of characteristic # p. Then
the Quillen-Lichtenbaum Conjecture holds for the prime p.
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Proof. (Sketch) Let F be a field of characteristic # p. On of the main con-
sequences of the Bloch-Kato Conjecture is the following comparison between
motivic cohomology and étale cohomology: There is an isomorphism

i v o[ H.(F,Z/p’(n)) if0<i<n
(B, 2/p"(n)) = { 0 o i) otherwise.

This was proved in [92] for fields with resolution of sigularities and in [32]
in general. An easy implication is that H',(F,Z(n)) is uniquely p-divisible
for i < 0 and also for ¢ = 0, if F' contains only finitely many p-power roots
of unity. If F is a global field, then we also obtain that HY%,(F,Z(n)) is
p-divisible for ¢ > 3 and uniquely p-divisible for ¢ > 3 unless p = 2 and
F has a real embedding. The link between motivic cohomology and K-
theory is provided by the following third quadrant spectral sequence, due to
Bloch-Lichtenbaum-Friedlander-Suslin-Voevodsky ([12],[81]):

B} = HY "(F,Z(—q)) = K 4(F).

The groups qu on the g-axis of the spectral sequence are isomorphic to
Milnor’s K-theory groups:

Hj(F, Z(i) = K} (F)

by a result of Suslin-Voevodsky [92]. The study of the action of the Adams
operations on the spectral sequence by Gillet-Soulé [34] yields that all differ-
entials in the spectral sequence are torsion, and that it degenerates modulo
groups of finite exponent (cf. also [49]). Since for a global field F' the odd
K-groups are finitely generated and the even K-groups are torsion we obtain
isomorphisms

K2n72(F) = H.?M(Faz(n))
KQn—l(F) = H/I\A(Faz(n))

for all n > 2 up to 2-torsion. We note that in the function field case nei-
ther the K-groups nor the motivic cohomology groups have char(F)-torsion

(cf. [31)).

To relate these results to the K-groups of the ring of integers, one can
use the localization sequence in motivic cohomology due to Geisser [30],
which relates motivic cohomology groups of a Dedekind ring to the motivic
cohomology of its field of fractions, and is very similar to Soulé’s localization
sequence in étale cohomology.
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This results in isomorphisms
Hj(or, Z(n)) ® Zp = Hiy (0, Zy(n))
for all primes p, n > 2 and % = 1,2 and isomorphisms - up to 2-torsion -
Kon—s(or) = H3,(or, Z(n))

Kon—1(or) = H)4(or, Z(n)).

The situation for the prime 2 is similar, but much more complicated, since
the presence of real places prevents the spectral sequence from collapsing.
Nevertheless the details have been worked out by Kahn and Rognes-Weibel
and the consequences of Voevodsky’s proof of the Milnor Conjecture for the
2-primary Chern character are summarized in the following unconditional
result:

Theorem 2.8. [Rognes-Weibel [81], Kahn [49]] Fori = 1,2 and 2n—i >
2 the 2-primary Chern character

cht?

in - KQn—i(OF) QZy — Hé;t(OI}?‘a ZQ(n))
18

an isomorphim if 2n—4=10,1,2,7 mod 8§,
surjective with kernel = (Z/2Z)™ if 2n —i = 3 mod 8§,
injective with cokernel = (Z/2Z)™ if 2n —i = 6 mod 8.

In the case that n = 3 mod 4, there is an ezact sequence
0 — Kon—1(0p) ® Zy — Hyy (0%, Za(n)) — (Z/2Z)"
— Kon—2(0r) ® Zo — H,(0fp, Za(n)) — 0.

We see that the relation between higher algebraic K-groups of op (ten-
sored by Zs) and dyadic étale cohomology is quite complicated for certain
indices. On the other hand the motivic cohomology groups of or behave
much better: For all n > 2 and 1 =1, 2:

Hj(op, Z(n)) ® Zy = H (0, Za(n)).
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Moreover, if we assume the Quillen - Lichtenbaum Conjecture for odd primes
p, then the motivic Chern characters

chit + Kon_i(F) = Hj(F,Z(n))

are isomorphisms up to 2-torsion and the 2-primary information is the same
as in Theorem 2.8.

Even if we do not assume the Quillen-Lichtenbaum Conjecture for odd
primes p we can still find global “models” H'(or,Z(n)), i = 1,2, for the
étale cohomology groups (cf. [18]). For ¢ = 2 this is easy. We simply define

H?(op, Z HHth OF[ Zyp(n))-

This is a finite group, and the Chern characters for each prime p yield a
homomorphism
KQn_Q(OF) — H2(0F, Z(n))

For 7 = 1 the construction is more involved. Let

H (oF,Z HH oF Zp(n)).

)

This is a finitely generated module over Z. The étale Chern characters ch(p
yield a homomorphism

chiy : Kon_1(or) ® Z — HX (o, Z(n))

with finite cokernel T' of 2-power order, hence we obtain a short exact se-
quence of finitely generated Z-modules

0 = chin(Kon_1(or)) ® Z — HL (0p,Z(n)) = T — 0.

We now use the fact that for any finitely generated Z-modules M, N the
natural map

2.®y Exty(M,N) = Extl(Z ®z M,Z ® N)

is an isomorphism. For ¢ > 0 these groups are finite and hence we obtain in
particular an isomorphism

Exty(M,N) = Ext}(Z ®z M,Z &z N).
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If we apply this to M = chy,(Ko,—1(or)) and N = T, then we see that
there exists a finitely generated Z-module H'(op,Z(n)), which fits into a
commutative diagram

0 — Chl,n(K2n—1(0F)) — H1(0F7Z(n)) — T —0

! ! |

0 — chin(Kon—1(or)) ®z7 — Hi(op,Z(n)) — T — 0

In fact, H'(or,Z(n)) is uniquely determined (cf. [18]). Since the left vertical
arrow is injective, we see that H'(op,Z(n)) injects into H. (or,Z(n)) and
moreover for each prime p we have

H'(or, 2(n)) ® Zy = H}or (1] Zy(n).
We see that for ¢ = 1,2 the Chern characters ch; , induce exact sequences
0 — ker (chin) = Kon—i(or) = H'(or,Z(n)) — coker (chin) — 0.
Of course, if the Quillen-Lichtenbaum Conjecture holds, then
H'(oF, Z(n)) = Hj,(or, Z(n)),

chin = chﬁj’I is Pushin’s Chern character and the kernel and cokernel are
finite 2-groups determined by the results in Theorem 2.8.

We mention that for n = 2 we have the following special cases due to
Tate, Merkurjev-Suslin and Levine:

Ks(or) = H?(op, Z(2))

and
K3(F)ina = H' (0r, Z(2)).

Assume now that F/F is a finite Galois extension of number fields with
Galois group G. Let p be a prime and let S denote a finite set of primes
of F' containing all primes above p as well as all primes which ramify in F.
Let o7 denote the ring of S-integers of F and let o, denote the integral
closure of ofp in E. The extension spec 0% — spec 0}"; is then étale, and we
want to study Galois descent and Galois codescent properties for the étale
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cohomology groups H} (oE, p(n )) for n > 2 and i = 1,2. We recall that for
i = 1 the cohomology groups H}, (0%, Zy(n)) are independent of the set S
and isomorphic to H), (E, Zy(n)).

We note that in the Hochschild-Serre spectral sequence

By = H'(G, H}, (03, Zy(n)) = B = H (05, Zy(n))

all Fy-terms with j = 0 vanish, since HY (0%, Zp(n)) = 0. For p odd the
terms with j > 3 vanish as well. This easﬂy implies the following result:

Proposition 2.9. Let E/F be a Galois extension of number fields with
Galois group G. Then

Hét(E,Zp(n))G = Hét(Fa Zp(n))'

Furthermore, if p is an odd prime, and S a finite set of primes in F con-
taining all primes above p and all finite ramified primes, then the following
sequence is exact:

0 — HY(G, Hy(E, Zy(n))) — Hg (0, Zy(n)) — H(0%, Zy(n))" —
H*(G,H}(E,Z,(n))) — 0.

In a similar fashion we can use the Tate spectral sequence for p odd
(cf. [84],[50]), which in cohomological formulation reads

EY = H (G, H}, (03, Zy(n)) = B = H (03, Zy(n))
for < 0 and 5 > 0 to obtain:
Proposition 2.10. For p odd the corestriction induces an isomorphism
H(0%, Zp(n))a = Hy(op, Zp(n)).

From Propositions 2.9 and 2.10 we obtain the following interesting con-
sequence for ¢ = 1,2. The general case can be deduced from this (cf. [47]).

Corollary 2.11. For p odd and all © € Z there are canonical isomorphisms

H'(G, Hy(E, Lp(n))) = H'(G, Hy(E, Lp(n))).
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The situation for the prime 2 is more complicated, since the higher étale
cohomology groups do not necessarily vanish, and the Galois descent and
codescent properties of HZ (E,Zy(n)) are more complicated. One way to
deal with these difficulties is to modify the dyadic étale cohomology groups.
This was done in [18] based on [47] with the definition of positive étale
cohomology groups H' (0%, Zs(n)) for an arbitrary number field K and an
arbitrary finite set of primes S in K containing the dyadic primes. In our
context the two main features of H: (0%, Zs(n)) are:

1. H (0%,Zs(n)) = 0 for i # 1,2 (We use here the indexing of [47], not
of [18]).

2. There is a long exact sequence
0 = @yjooH (Gy, Za(n)) — Hy (0%, Za(n)) — Hg (0%, Za(n)) —
Gav\ooHl(GmZQ(n)) - H—%—(O%’ZQ(W’)) - Hgt(O%,ZQ(n)) -
@v\oon(Gva ZQ(”)) -0,

where G, denotes the decomposition group of the infinite prime v.

The cohomology groups H*(G,, Zo(n)) are easy to calculate:

Zo(n if n is even or v is complex
H(Gu, Zy(n)) :{ 0 " otherwise
and for s > 1
; 0 if v is complex or 7 + is odd
7 —
H (G, Zo(n) = { Z]2Z  otherwise.

Therefore we get a more precise relation between positive étale cohomol-
ogy and étale cohomology depending on the parity of n: For n odd we have
an exact sequence

0 = (Zo(n))?2U0 - H (0%, Zo(n)) — Hi (0%, Za(n)) — (Zy(n)) ()

H? (0%, Za(n)) — Hi (0k, Za(n)) = 0,

whereas for n even we obtain two short exact sequences

0 = (Z2(n)) Y = H (0f, Za(n)) — H (0%, Za(n)) = 0
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and
0— Hﬂ2—(0§022(n)) - Hegt(of{a Za(n)) — (Zg(n))”(K) = 0.

We remark that for odd n the map H} (0%, Zs(n)) — (Zy(n))" ) factors
through

Hg (0%, Zo(n)) /2 — H' (0}, Z/2Z) = K* K™,
and hence can be viewed as a signature map.

Because the positive étale cohomology groups vanish in degrees # 1,2 the
analogs of Propositions 2.9, 2.10 and Corollary 2.11 hold for these groups.
Using the relation to étale cohomology this allows to describe Galois descent
and codescent for HZ (03, Zy(n)) for the Galois extension E/F (cf. [53]).
Let ro denote the number of real primes in F', which ramify in F and let
- for n odd - 2%~ denote the order of the cokernel of the signature map
HY,(B, Zo(n)) — (Z/22)".

Proposition 2.12. For n even there are eract sequences
0 — H%(0%,Za(n))g — HE (0%, Za(n)) = (Z/2Z)™ — 0
and
0 — H'(G, Hy(E, Zs(n))) — Hg(0p, La(n)) = Hi (0%, Za(n))® —

H*(G,HY(E, Zs(n))) — 0.

For n odd there are exact sequences
0 = (Z/2Z)°> — H}(0%, Za(n))g — Hg(op, Za(n)) — 0
and
0 — H'(G, Hy(E, Zs(n))) — Hi(0p, Za(n)) — Hi(og, Za(n))* —
H*(G,HY(E,Za(n))) = (Z/27) %> — 0.

All the p-adic results can be lifted to the global situation (cf. [18] for
details) and give the following;:
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Theorem 2.13. Let E/F be a Galois extension of number fields with Galois
group G, and let S denote a set of primes in F' containing all ramified primes.
i) For each n > 2 there are isomorphisms
HY(F,Z(n)) = HY(E,Z(n))°.
i1) For each even n > 2 there are ezact sequences
0 — H%*(op,Z(n))g — H*(F,Z(n)) — (Z/2Z)™ — 0
and
0 — HY(G,H"(E,Z(n))) - H*(o%, Z(n)) — H*(0f;, Z(n))% —
H*(G,H'(E,Z(n))) — 0.
iii) For each odd n > 3 there are exact sequences
0 — (Z/27)°= — H?*(0%, Z(n))g — H*(0%,Z(n)) = 0
and
0 — HY(G,H"(E,Z(n))) = H*(o%, Z(n)) — H*(0f, Z(n))% —
H*(G,H'(E,Z(n))) = (Z/2Z)"="%> — 0.

We remark that for n = 2 these results describe in fact Galois descent
and codescent for Ks(0%,), results which are due to Kahn [47] and Bak-
Rehmann [2], respectively. In general these results describe Galois descent
and codescent for motivic cohomology provided the Quillen-Lichtenbaum
Conjecture holds for odd primes.
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3 Iwasawa theory

Now that we have more or less complete information about the relation be-
tween algebraic K-theory and étale cohomology for our number rings or, we
want to discuss briefly the relation between étale cohomology and Iwasawa-
theory, which will allow us to actually interpret orders of étale cohomology
groups in some cases.

Let F' be a number field and p a prime number. A Galois extension
Fy/F is called a Zy-extension, if I' := Gal(F/F) = 7Z,. Since the closed
subgroups of Z, are of the form 0 or p"Z,, we have for each n > 0 a unique
subfield F,, of degree p™ over F' and Gal(F,/F) = Z/p™Z,. Hence we obtain
a filtration

F=FCF,CF,C:---CPFg,

such that [F;, : F] = p™ and Fi, = Up>0F,.

A typical example of a Z,-extension Fy,/F is the so-called cyclotomic
Zy-extension, which is constructed as follows: Let Eo = F(upe). Then
Gal(Ex/F) = Z, x A, where A is finite. Now we take Fy, = ES. The
number of independent Z,-extensions of a number field F' is always > 1 +
r9(F) and = 1 + ro(F) if and only if Leopoldt’s Conjecture holds for the
field F' and the prime p. If, in particular, F is a totally real abelian number
field, then the cyclotomic Z,-extension is the only Z,-extension of F'.

Within a Z,-extension F,,/F ramification is very restricted, in fact the
extension is p-ramified, i.e., unramified outside primes above p. In particular
this implies that I' is a quotient of Ggf), and therefore we obtain spectral
sequences relating the étale cohomology groups of OF[%] and of ooo[%], where
0co denotes the integral closure of op in Fi.

Let -y denote a topological generator of I', and let I';, = Gal(F,,/F). Pass-
ing to the inverse limit we obtain the Jwasawa-algebra Z,[[I']] := @Zp[Pn].
The group rings Z,[I',] are quite complicated, but the Iwasawa-algebra has a
rather simple structure, it is isomorphic to the power series ring A := Z,[[T7],
the isomorphism being induced by v — 14T'. A is a two-dimensional Noethe-
rian local Krull domain, and the structure of finitely generated A-modules
is known up to pseudo-isomorphism. If M and N are finitely generated
A-modules, then we write M ~ N if there exists a pseudo-isomorphism
f: M — N, ie., a module homomorphism with finite kernel and cokernel.
The structure theorem for finitely generated A-modules now says that for
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every finitely generated A-module M there is a pseudo-isomorphism

m
M~ Ao @ A/pl

=1

Here p; are certain height 1 prime ideals of A, hence either equal to (p)
or to (F(T)), where F(T) is an irreducible Weierstrass polynomial, i.e., an
irreducible polynomial of the form

F(T)=T"+b, \T" ' 4+---+ b

with p|b; for all i. The prime ideals p; and the integers r > 0, m > 0 and n; >
1 are uniquely determined by M. The ideal [[/~, pi** is the characteristic
ideal of M. Any generator G(T) of the characteristic ideal has the form

G(T) =p"- F(T)-U(T),

where F(T) is a Weierstrass polynomial and U(T) is a unit in A. The
polynomial
f(T) :=p"- F(T)

is the characteristic polynomial of M. The exponent yu is the p-invariant of
M and X := degf(T) is called the A-invariant of M.

The following results are extremely useful: Assume that M is a finitely
generated A-torsion module with characteristic polynomial f(T"). We de-
note by MT the invariants of M under I and by My = M/(y — 1)M the
coinvariants of M. The following statements are equivalent (cf. [19]):

(a) MU is finite

(b) Mr is finite

(c) f(0) # 0.

If any of these conditions are satisfied, then
| MY

— — p—u(f(0))
|MF‘ |f(0) |IJ p P ?

where v, denotes the p-adic valuation.

Let us assume now that Fi,/F is the cyclotomic Z,-extension. Let Eo, =
F(upo) and let Goo = Gal(Ex/F) = T' x A, where A = Gal(F(C2p)/F.
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Since FE,, contains all p-power roots of unity, the Galois group G, acts on
tpeo and this action gives rise to the cyclotomic character

p:Goo — L,

defined by
7= CP(U)

for all 0 € G and all ¢ € pupe. We denote by x the restriction of p to I
and by w the restriction of p to A. w is the Teichmiiller character.

Let M be a Zjmodule with a G-action, denoted by m — m?. For
n € Z the n-th Tate twist M(n) of M is defined as the Z,-module M with
the new G -action
m — p(o)” -mP.

In particular, Zy(1) = lim yupn =: T, which is the so-called Tate-module, and
Qp/Zp(1) = ppeo. In general: M(n) = M ®z,Zy(n). If M and N are two Z,-
modules with a G-action, then we turn Homgz,(M, N) into a Gs-module
in the following way: For f € Homz (M, N) and o € G we define f7 via

It is easy to see that with this definition of the G -action on Hom-groups
we obtain canonical isomorphisms for all n € Z:

Homgz,(M(n),Q,/Zy) = Homg (M, Q,/Z,(—n)) = Homz,(M,Qy, /Zyp)(—n).

Assume now that M is a A-torsion module with characteristic polynomial
f(T). Then for all multiples n of the order of A the characteristic polynomial
of M(n) is given by

fe(y) ™A +T) = 1).

The most interesting A-modules arise as Galois groups of certain abelian
pro-p extensions of Fy,, where F /F is an arbitrary Z,-extension of a num-
ber field F. Assume then that K, is an abelian pro-p extension of Fi,
let X = Gal(Ks/Fx), and assume that Ko, /F is again a Galois extension
(although not necessarily abelian). Let G = Gal(K/F). We obtain an
extension of Z,-modules

0 X—-G—=T-—=0.
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Since X is abelian, I' acts on X by inner automorphisms, and this action
turns X into a compact A-module. As examples we can take for K., the
maximal abelian unramified pro-p extension of Fi,, usually denoted by Ly,
or the maximal subextension of Ly, in which all p-adic primes of F, split
completely, usually denoted by L/ . The corresponding Galois groups X, :=
Gal(Le/Foo) and X! := Gal(Ll, /Fy) are examples of finitely generated
A - torsion modules.

The main example in the current framework is the following: Let M
denote the maximal abelian pro-p-extension of Fi,, which is unramified out-
side primes above p and infinite primes, and let X = Gal (M /Fx). This is
the so-called standard Iwasawa module. 1t is a finitely generated A-module.
Let us again specialize to the case of the cyclotomic Zy-extension. Iwasawa
has shown that in this case X has no non-trivial finite A-submodules and
that the A-rank of X is equal to ro. In particular, X is a A-torsion module if
and only if F is totally real, which we will assume from now on. As before,
we let E = F((op) and E = F(up). To simplify this exposition we will
assume that F is equal to the maximal real subfield ET of E. For p = 2, this
is automatically satisfied. For p odd the general argument uses eigenspaces
of powers of the Teichmueller character of the standard Iwasawa-module over
ET.

Consider now an even positive integer n > 2. Let us also fix a topological
generator 7y of I'. Recall that Qg’) denotes the maximal algebraic extension
of F, which is unramified outside primes above p and infinity, and that
Ggf) = Gal (Q%’) /F). Since F/F is unramified outside primes above p, we

have Fo, C Q%p) and we denote by G%pol the Galois group of Q%’) /Fs. The
cohomology groups H}, (0}, Zy(n)) are finite (cf. Corollary 2.2), and hence

H (0, Qp/Zp(n)) = Hg (0, Zp(n).
We now consider the Hochschild-Serre spectral sequence
Byt = HY(T, HYGE) ,Qy/Zy(n))) = HPPU(GE, Q[ Zy(n)).

Since the cohomological p-dimension of I' is equal to 1 all terms E? with
p > 0 vanish, hence in particular we obtain an isomorphism

HY(GP),Q,/Zy(n)) = H'(GP),Q,/Z,(n))".
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Since n is even and [Fo, : Foo| = 2, the module Q,/Zy(n) is a trivial Gg)o)o—
module and we obtain

HY(GE ,Qy/Zp(n)) = Hom (GE) ,Q, /Z,(n)) = Hom (X,Qy/Zy(n)),

since X is the pro-p-part of the abelianization of Ggf;. If we denote by #
the Pontrjagin - dual and use the fact that

Hom (X,Qy/Zp(n)) = Hom (X(—n),Qp /Zyp),
then we have shown that
H2, (0, Zp(n)) = HE (040, Qy /Zy(n)) = HY(GE),Qp/Zp(n)) =2 (X (—n)1)*.

Since HZ (0%, Zy(n)) is finite, so is X(—n)r, hence also X(—n)". But
X has no non-trivial finite submodules, and therefore X(—n)'" = 0. Let
f(T) denote the characteristic polynomial of the Iwasawa module X. As we
pointed out above f(k(y)"(1+T) —1) is then the characteristic polynomial
of X(—n), and the order of the finite group X(—n)r is obtained up to a
p-adic unit by evaluating the characteristic polynomial at 7' = 0.

We obtain:
|HZ, (0, Zip(n))| ~p f(k(7)" = 1).

Here again ~, indicates that both sides have the same p-adic valuation.

A similar, but much easier calculation for the Iwasawa module Z, over
F, whose characteristic polynomial equals 7", shows that

| Hey (0, Zyp(n))| = |HY(F,Qp/Zy(n)| ~p 6(7)" — 1.

A consequence of the Main Conjecture in Iwasawa, theory is the following;:

fe()" = 1)

Ky)m =1~
For odd primes p the Main Conjecture was proved by Wiles for arbitrary
totally real number fields F' (cf. [101]) and for the prime 2 he proved the
Conjecture over Q.

Cr(l —n) ~p Crp(l —n) ~p
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To summarize the discussion, recall that

H? (o5, Z(n)) = [ | HE (0, Zy(n)).

Let us denote the order of H2(op, Z(n)) simply by h,(F) in analogy with the
class number, and let us denote the order of H°(F, Q/Z(n)) simply by w,, (F).
Then we obtain the following special case of the Lichtenbaum Conjectures
(for details at the prime 2 cf. [52]):

Theorem 3.1. Let F be a totally real abelian number field and n > 2 an
even integer. Then

hn(F)

wn(F)

The same result holds up to 2-torsion for an arbitrary totally real number
field.

C(r(l—n)=+

In a similar manner one can prove a “higher” relative class number for-
mula: Let L/F be a CM-extension of number fields and let n > 3 be an odd
integer. Let x denote the non-trivial character of Gal (L/F).

We recall (cf. [99], Chapter 4) that the classical relative class number
formula reads

2" h~
LF X 0)=—"- T\
XO=7 wm
where @ = [0} : 0}, - pr] is the @Q-index, which is equal to 1 or 2.
The “higher” relative class number A, is simply defined as
(D)
" ha(F)

We note that the order of the zeroes of the zeta-functions of F' and L at
s = 1 — n are the same, and therefore the L-function Lg(yx,s) does not
vanish at s = 1 — n. The precise result is the following

Theorem 3.2. [53] Let L/F be a CM-extension of number fields and n > 3
an odd integer. If L is abelian, then
oritl  p

Qn  wa(L)’

Lp(x,1—n)==%

where
Qn = [Hg(L, Za(n)) : Hy(F, Zs(n)) - H*(L, Qs /Zs(n))]
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is a generalized Q-index, which is again equal to 1 or 2.

For an arbitrary CM-extension the same result holds up to 2-torsion.

As in the previous result the obstruction to obtaining the result in full
generality lies again in the Main Conjecture for the prime 2.

Let us consider some examples, where this result proves to be useful:
Let L = Q(+/—d) be an imaginary quadratic field, and let us take n = 3.
Since K4(Z) = 0, the relative class number formula can be used to compute
Ky (o) under the Quillen-Lichtenbaum Conjecture for odd primes p:

For d = 1,2,3 we obtain K4(o) =0, and for d = 5 we obtain K4(oy) =
7./15.
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4 The Lichtenbaum Conjecture

The Beilinson regulator map is simply obtained by composing the various
embeddings of F' into C with a Chern character

ch : Kon_1(C) — Hb(spec(C),R(n)) = R(n — 1)
into Deligne-cohomology. Here R(n — 1) = (2mi)" !R. We refer to the
excellent article of Neukirch in [7] for details. We obtain

pn s Kon_1(F) = Kop_1(F) ® Q = (R(n — 1)Hem 0+,

where complex conjugation acts on the set of embeddings and on the coeffi-
cients R(n — 1).

The Beilinson regulator map p, is twice the Borel regulator map by a
recent result of Burgos Gil [15], and therefore by Borel’s results the kernel of
Pn 18 torsion. The image of p,, therefore is a full lattice in the real vectorspace
(R(n—1)Hom (FO)+ of dimension d,,, and we denote by R,,(F) the covolume
of this lattice.

In a similar manner we can define a motivic regulator map

put: Hj(F, Z(n)) = Hiy(F, Z(n)®Q = Ky, 1 (F)@Q — (R(n—1)7om (FO)+

and we denote by RA!(F) the corresponding covolume.

The special cases, which we considered in the previous section, indicate
that the extended form of the Lichtenbaum Conjectures — including powers
of 2 — should read:

by (F)
wn(F)

hence that the correct version should be in terms of motivic cohomology
rather than K-theory.

(Pl —mn) == Ry,

In [54],[55] essentially the following result was obtained:

Theorem 4.1. Assume that F is an abelian number field. Then up to powers
of 2 the formula

Gi(1-m) =+

18 true.
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In fact, in [54] a slightly different result was obtained including some
Euler factors. This, however, is incorrect, and the Euler factors are removed
in [57]. An updated proof, which also removes connections to a wrong result
of Villemot’s, can be found in [8].

The idea behind the proof is quite classical: Let F' = Q({n), N > 2,
be a non-trivial cyclotomic field, and let G = Gal (F/Q). The Beilinson
regulator map has been calculated by Beilinson on a certain sublattice of
Kon_1(F) = Ko,_1(F)/tors., which is analogous to the group of cyclotomic
units, and the index of this sublattice is related to h,(F'). Let us make this
a little bit more precise: Let

ol

ok
Ln(z) - Z n
k=1

denote the n-th polylogarithm function, which is defined on |z| < 1 and
extended analytically to C \ [1,00). Beilinson has shown (cf. Neukirch’s
article in [7] and [43]) that there is a map of G-sets

en v \ {1} = Kon-1(F) @ Z[1/2],
such that for { € uy \ {1} the composite p, o €, is given by

¢ N —D(...,Ly(aC),...)
with « running through the embeddings of F' into C.

Let B,(F) denote the lattice in Ko, 1(F) ® Z[1/2] generated by the
image of €, and let BS "™ (F) denote the lattice generated by the image of
primitive N-th roots of unity.

The covolume of p,(BE“™(F)) is now calculated as

Nl (n —1)!

covolume (p, (BE"™(F))) = H @)1

K=D=(-pn=1

In(n, X),

where x runs through the characters mod N with given parity and
(%)= Y. X(a)Ln(e®™N).
a mod N
Let x denote the primitive character of conductor f, belonging to ¥, and let

n(nx) = Y x(a)Ln(e?™/x)

a mod fy
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denote the corresponding Gauss sum. The relation between [,(n,x) and
ln(n, x) is the following:

1@ = xep"Y) - £27"  In(n, x) = Ny (n, %).
p|N

Now, for a primitive character x with parity x(—1) = (=1)"~! the Gauss
sum I, (n,x) is related to the value of the derivative L'(1 — n,x) of the
Dirichlet L-function L(s,x) at s =1 —n via
11 .

2 @yt (n— D8 37 - ln(n, x)

L,(l -n, X) =
(cf. 38]).

Summarizing this discussion we obtain:

covolume (py (BE"™(F))) =

L (TI0 - xew ) 2 - )

2m
X
x(-=(-nn-1 \PIV

It is shown in [57] that the Euler factor

11 [T —x@p )

X
s(=n=(—pn-1 \PIN

is precisely the index of BE™™(F) in B,(F). On the other hand the zeta-

function (g(s) splits naturally into a product of L-functions:

CF(S) = H L(S7X)7
X

and we obtain for the special value at s =1 — n:
Pl-n)y=  J] L@-nx)- [J] ZLO-nx).
x(—1)=z<—1)”_1 X(—l)i(—l)"
In the previous section we calculated in particular the values of

Cp+(1—n) if niseven
II La-nx=¢ Crd-ny* if n is odd.
X(-DE(—1)n Cpell = n)”
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The proof of theorem 4.1 (in the special case F' = Q({n)) is now reduced to

showing that

~ _ hn(FT) if n is odd
[Kon—1(F) : Bn(F)] ~p { hn(F)~ if nis even

for all odd primes p. This is done using the étale Chern characters again to
map to étale cohomology. The group B, (F) maps to the group of cyclotomic
elements of Soulé and Deligne in H},(F,Zy(n)) and the index is calculated
using Poitou-Tate duality and Iwasawa-theory.
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5 K-theory and some classical conjectures in
number theory

Let p denote an odd prime number. For a number field with ring of integers
or and an arbitrary integer N the étale cohomology group HZ (0%, Qp/Zp(N))
is p-divisible, since the boundary map

83 2 Hgy (0w, Qp /Zp(N)) = HE, (0, Zp(N)) =0

is trivial, p being odd. As we have seen in section 2, for N > 2 the groups
HZ (0%,Q,/Zp(N)) are trivial as a consequence of Borel’s result on the finite-
ness of HZ, (0%, Zy(N)). For N =1 the corank of HZ (0}, Q,/Z,(1)) is equal
to s, — 1, where sp denotes the number of p-adic primes of F. For N = 0
the vanishing of HZ (0%, Q,/Zy(0)) is equivalent to Leopoldt’s Conjecture
for the prime p and the field F. More generally, Schneider has conjectured
that the groups HZ (0}, Qp/Zp(N)) vanish for all N # 1. It is easy to see
that the following two conditions are equivalent:

L. He?t(O’Fan/Zp(N)) =0
2. rkyn (HZ (0%, Z/p"Z(N)) = 0 for some n > 1.
Let dy, = [F({p») : F]. Then for all integers k:
Hé2t(OIF7 Z/an(N)) = Hé2t(0,Fa Z/an(N + kd'fl))a
and the second condition above is easily seen to be equivalent to the following

periodicity statement:

3. There exists n > 1 such that
HE (0, Zy(i)) = Hg (0, Zp(N))

for all i = N mod d,.

Let us assume that F' is totally real. Then for odd N < 0 Schneider’s
Conjecture is true as a consequence of a “Spiegelungssatz” and the vanishing
of H (0%, Q,/Z,(1—N)) (cf. [82]). Hence let us assume that N is even. Since
dn, is even as well, we can use the results of section 3 to relate the vanishing of
HZ (0%, Qy/Zy(N)) to a periodicity statement for values of the zeta-function

Cr(s):
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Theorem 5.1. [51]
Let F be totally real and N € Z even.
a) If N # 0, then the following 2 conditions are equivalent:
1. Hgt(OIFan/Zp(N)) =0.
2. There exists n > 1, such that
Cr(l —1) ~p Cp(1— )
foralli,j >2,i=7=N mod d,.
b) For N = 0 the following 2 conditions are equivalent:
1. Leopoldt’s Conjecture holds for p and the field F.

2. Cr(1 —dy) is not p-integral for some n > 1.

Proof. We have seen in section 3 that for ¢ even, ¢ > 2:

|HE (0, Zy(i))]
» :

= )

The result follows from the equivalence of conditions 1. and 3. above, and
the fact that for n large:

wi(F) ~pwj(F) fi=j=N#0O modd,

and
O

We note that the conditions in part a) hold, whenever N > 2, and there-
fore the second condition can be viewed as a generalization of the Kummer
congruences for Bernoulli numbers.

Let us go back to the simplest possible situation F' = @Q, and let us recall
a few facts about the K-groups of Z:
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Ko(z) = Z

K\(Z) = Z)2Z

Ky(Z) = Z)27

Ks(Z) = 7./48 [59]
Ky(Z) = 0 [79]

K5(Z) Z [24]

Kg(Z) = 3 —torsion [24]

Furthermore, K,,(Z) is finite for all m > 0, m # 1 mod 4, whereas for
m = 1 mod 4 we obtain K,,(Z) = Z & (finite).

Theorem 2.8 simplifies and yields the following information about the
kernels and cokernels of the 2-primary Chern characters chz(-%z for i = 1,2
and 2n — 1 > 2:

- 1
chgg : Kop_i(Z) @ Zo — HZ’:t(Z[i]’ Zy(n))

is an isomorphim if 2n —4=0,1,2,4,7 mod 8,
surjective with kernel Z/2Z  if 2n — i = 3 mod 8§,
injective with cokernel Z/2Z if 2n —4i = 5,6 mod 8.

For 2n — 1 =3 mod 8 the extension
1
0= Z/27 — Koy 1(Z) ® Zg — Hét(Z[i],Zg(n)) -0

is nontrivial (cf. [81]). The cohomology groups HZ,(Z([3],Z2(n)), are easily
calculated using the results from section 2:

1 0 if n is odd
2 L _
Hét(Z[Q]’ZQ(n)) - { Z/2Z if n is even

Therefore we obtain the following results about the 2-torsion in Ko,_2(Z):

[0 ifn=0,1,3 mod 4
Kzn—2(Z)(2)—{ Z/2Z if n=2 mod 4

In a similar way we obtain

1

1 Zo® 7./27 if n is odd
(@) Za) = { 07

H%(Q,Qq/Zo(n)) if n is even.
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If we assume that the Quillen-Lichtenbaum Conjecture holds for odd primes,
then we obtain for odd n:

N/ ifn=3 mod4
KZn—l(Z)I{ Z@®Z/2Z ifn=1 mod 4,

whereas for even n the group Ky,,—1(Z) is finite. In this case it is isomorphic
to H°(Q,Q/Z(n)) if n =0 mod 4 and cyclic of order 2 - |H(Q, Q/Z(n))| if
n =2 mod 4.

For even n > 2, we can compute the orders h,,(Q) of the groups H2(Z, Z(n))
and — assuming the Quillen-Lichtenbaum Conjecture for odd primes — of the
K-groups Ko, 2(Z) via the results of section 3:

Kop_o(Z
¢(1—n)= + @ _ o Kona(Z)]
wn(@) |K2n—1(Z)|
On the other hand we know from Euler’s result that
By,
1—-n)=—-——
((1-mn)=-=2,
where the B, are the Bernoulli numbers. Let us write
Bp| Ny
n D,

with N, and D, relatively prime. Then it is well-known that
D, = H pnp+1’
p—plln

where n, = ord,(n). It is easy to compare this with the order w,(Q) of

H°(Q Q/Z(n)):

n 2 bl
and therefore by our Lichtenbaum formula:
v _ (@
"2

as well. Now we note that for n = 0 mod 4 we have - still assuming the
Quillen-Lichten-baum Conjecture -:

|Kon-1(Z)| = wn(Q) =2- Dy
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and

|Kon—2(Z)| = 5 - hn(Q) = Ny,

whereas in the case that n = 2 mod 4 the situation is different:

N —

|Kopn—1(Z)| = 2w, (Q) =4- D,

and
|Kon—2(Z)| = hn(Q) =2 Ny.

This would imply for example that Kg(Z), K14(Z) are trivial, K;¢(Z),
K13(Z) are cyclic of order 2, and K2(Z) is cyclic of order 691. However, all
these calculations merely give the order of the finite K-groups and cohomol-
ogy groups, but not their structure.

The structure is related to Vandiver’s Conjecture, an observation due to
Kurihara [58]: Let us fix an odd prime p, and let E = Q((,). Let Ag denote
the p-part of the class group of F, and let A denote the Galois group of
E/Q. Then

Ap = @) A}
is the decomposition of Ap into eigenspaces with respect to the powers w’
of the Teichmiiller character. Clearly Agg} = 0. Since the class group of og
is equal to the class group of OE[%], the results of section 3 show that

; ; “iA A 1
(Ap/p)V! = HE (o, pp)1 = HE (o, b *)™ = HE(Z]

;] 2P,

’/’Lp

Therefore

Proposition 5.2. For even i, 2 < ¢ < p — 3 the eigenspace A%] 18 trivial if

and only if Hgt(Z[%], Zyp(p — 1)) =0, hence if and only if pt hy—;(Q).

Assuming the Quillen-Lichtenbaum Conjecture the latter condition is
equivalent to Ky, 1-4)(Z)(p) = 0, hence

Corollary 5.3. [Kurihara] [58] Assume that the Quillen-Lichtenbaum
Conjecture holds for p. Then Vandiver’s Conjecture is equivalent to the
vanishing of Ka.(Z)(p).

As a consequence — using the fact that K4(Z) = 0 — we obtain the
following
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Corollary 5.4.
A= — o,

The vanishing of the K-theory of Z in dimensions a multiple of 4 also
implies that the K-groups of Z in dimensions = 2 mod 4 are cyclic, and
hence the structure of the K-theory of Z would be completely known.

Let us mention another application of the technique of expressing eigen-
spaces of class groups in terms of étale cohomology groups over Z:

Assume that 7 is odd, 3 <7 < p—2, and let j = p — 4. Then as we
observed above:

i 1 ; 1 .
p[lAZ) = p||HEELL ) = p IR ELLZG)

But 1 B
Hgt(Z[Z—)],Z(j)) ~p 7J ~p Bj = Bp_i,

hence we obtain the famous theorem of Herbrandt-Ribet:

Theorem 5.5. For odd i, 3<i<p—2:

p|lAY| < p|B, .
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